184 research outputs found

    Auroral Cluster: A Space Physics Mission for Multiple, Electronically Tethered Small Satellites

    Get PDF
    Auroral Cluster is a space physics mission that has been identified by the NASA Space Physics Strategic Implementation Study as a candidate for flight in the next decade. Auroral Cluster will employ multiple spacecraft outfitted with similar complements of science instruments allowing simultaneous multipoint plasma measurements in the Earth\u27s auroral regions. Co-orbiting small satellites (mass \u3c 400 kg each) that are electronically tethered to share distributed spacecraft systems represent an efficient approach for achieving the science goals of the Auroral Cluster mission. Multisatellite missions represent a new trend in gathering space science data and pose many new and difficult challenges for the space systems engineer. The results of an Auroral Cluster feasibility study, which discusses a variety of mission trade-offs, are presented. A discussion of the science background and mission goals is used to identify the technical drivers for the design of the multiple spacecraft system. A mission plan and some considerations for a Auroral Cluster satellite design are presented. Special consideration is given to the spacecraft subsystems that will allow the system to be operated as a network of electronically tethered interdependent small satellites. These subsystems include attitude determination, spatial separation knowledge and control, data storage, and intersatellite communication

    Multiscale studies of the three-dimensional dayside X-line

    Get PDF
    AbstractWe review recent experience from the Cluster, Double Star, and THEMIS missions for lessons that apply to the upcoming Magnetospheric Multiscale Mission (MMS) being developed for launch in 2014. On global scales, simulation and statistical studies lead to mean configurations of dayside reconnection, implying specific relative alignments of the inflow magnetic fields and X-line, with implications for MMS operations designed to maximize the number of close encounters with the diffusion region. At intermediate MHD-to-ion scales, reconstruction of features created by one or two X-lines have developed to the point where data from a cluster of spacecraft can determine their temporal trends and the approximate three-dimensional X-line structure. Recent petascale particle-in-cell (PIC) simulations of reconnection encompass three spatial dimensions with excellent resolution, and make striking predictions of electron scale physics that creates complex interacting flux ropes under component reconnection. High time resolution measurements from MMS will determine the detailed electron scale kinetics embedded within the global and MHD–ion scale contexts. These developments will lead to the refinement of our three-dimensional multiscale picture of reconnection, yielding improved understanding of the global, MHD, and local physics controlling the onset or quenching, variability, and mean rate of reconnection. This in turn will enable improved predictability of the structural features created by transient reconnection, and their space weather consequences

    Lattice calculation of 1−+1^{-+} hybrid mesons with improved Kogut-Susskind fermions

    Get PDF
    We report on a lattice determination of the mass of the exotic 1−+1^{-+} hybrid meson using an improved Kogut-Susskind action. Results from both quenched and dynamical quark simulations are presented. We also compare with earlier results using Wilson quarks at heavier quark masses. The results on lattices with three flavors of dynamical quarks show effects of sea quarks on the hybrid propagators which probably result from coupling to two meson states. We extrapolate the quenched results to the physical light quark mass to allow comparison with experimental candidates for the 1−+1^{-+} hybrid meson. The lattice result remains somewhat heavier than the experimental result, although it may be consistent with the π1(1600)\pi_1(1600).Comment: 24 pages, 12 figures. Replaced to match published versio

    Histo-blood group gene polymorphisms as potential genetic modifiers of infection and cystic fibrosis lung disease severity

    Get PDF
    Background: The pulmonary phenotype in cystic fibrosis (CF) is variable; thus, environmental and genetic factors likely contribute to clinical heterogeneity. We hypothesized that genetically determined ABO histo-blood group antigen (ABH) differences in glycosylation may lead to differences in microbial binding by airway mucus, and thus predispose to early lung infection and more severe lung disease in a subset of patients with CF. Methods and Principal Findings: Clinical information and DNA was collected on >800 patients with the ΔF508/ΔF508 genotype. Patients in the most severe and mildest quartiles for lung phenotype were enrolled. Blood samples underwent lymphocyte transformation and DNA extraction using standard methods. PCR and sequencing were performed using standard techniques to identify the 9 SNPs required to determine ABO blood type, and to identify the four SNPs that account for 90-95% of Lewis status in Caucasians. Allele identification of the one nonsynonymous SNP in FUT2 that accounts for >95% of the incidence of nonsecretor phenotype in Caucasians was completed using an ABI Taqman assay. The overall prevalence of ABO types, and of FUT2 (secretor) and FUT 3 (Lewis) alleles was consistent with that found in the Caucasian population. There was no difference in distribution of ABH type in the severe versus mild patients, or the age of onset of Pseudomonas aeruginosa infection in the severe or mild groups. Multivariate analyses of other clinical phenotypes, including gender, asthma, and meconium ileus demonstrated no differences between groups based on ABH type. Conclusions and Significance: Polymorphisms in the genes encoding ABO blood type, secretor or Lewis genotypes were not shown to associate with severity of CF lung disease, or age of onset of P. aeruginosa infection, nor was there any association with other clinical phenotypes in a group of 808 patients homozygous for the ΔF508 mutation

    Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo

    Get PDF
    Interatrial septal disorders, which include: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormalities; to assess anatomic, hemodynamic, and clinical consequences of interatrial septal pathologies. Fifty-three adult patients with impulse conduction disorders and patients without ECG changes but with signs of interatrial septal abnormalities, who were referred to our center for echocardiography, were included in a prospective transesophageal echocardiography study. Interatrial septal anomalies were detected in around 85% of the examined patients. Patent foramen ovale was encountered in 32% of the patients, and in combination with atrial septal aneurysm in an additional 11.3% of cases. Atrial septal aneurysm and atrial septal defect were diagnosed with equal frequency in 20.7% of our study population. Impulse conduction disorders were significantly more suggestive of interatrial septal anomalies than clinical signs and symptoms observed in our patients (84.91% vs 30.19%, P=0.002). Right bundle branch block was the most frequent impulse conduction disorder, found in 41 (77.36%) cases. We conclude that interatrial septal anomalies are highly associated with impulse conduction disorders, particularly with right bundle branch block. Impulse conduction disorders are more indicative of interatrial septal abnormalities in earlier stages than can be understood from the patient’s clinical condition

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Rotationally driven magnetic reconnection in Saturn's dayside

    Get PDF
    Magnetic reconnection is a key process that explosively accelerates charged particles, generating phenomena such as nebular flares, solar flares and stunning aurorae. In planetary magnetospheres, magnetic reconnection has often been identified on the dayside magnetopause and in the nightside magnetodisc, where thin-current-sheet conditions are conducive to reconnection. The dayside magnetodisc is usually considered thicker than the nightside due to the compression of solar wind, and is therefore not an ideal environment for reconnection. In contrast, a recent statistical study of magnetic flux circulation strongly suggests that magnetic reconnection must occur throughout Saturn’s dayside magnetosphere. Additionally, the source of energetic plasma can be present in the noon sector of giant planetary magnetospheres. However, so far, dayside magnetic reconnection has only been identified at the magnetopause. Here, we report direct evidence of near-noon reconnection within Saturn’s magnetodisc using measurements from the Cassini spacecraft. The measured energetic electrons and ions (ranging from tens to hundreds of keV) and the estimated energy flux of ~2.6 mW m–2 within the reconnection region are sufficient to power aurorae. We suggest that dayside magnetodisc reconnection can explain bursty phenomena in the dayside magnetospheres of giant planets, which can potentially advance our understanding of quasi-periodic injections of relativistic electrons6 and auroral pulsations
    • 

    corecore